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Abstract-For a prescribed area fraction of stiffeners, we characterize the set of stiffener reinforced
Mindlin plates with extremal overall stiffness. The method rests upon the derivation of optimal
bounds of the Hashin-Shtrikman type. Our method is distinct from the usual Hashin-Shtrikman
approach. We make use of the underlying variational structure behind the Hashin-Shtrikman
method to show that the use of a comparison material is redundant. We do this by proceeding
directly and express the equilibrium equations in terms of positive definite integral operators. The
positivity of the operators is used to obtain a new Hilbert space variational principle for the effective
stiffness. The associated bounds are shown to be realized by effective rigidities associated with
hierarchical laminar arrangements of stiffeners. ':J::) 1997 Elsevier Science Ltd.

I. INTRODUCTION

We consider a Reisner-Mindlin plate of thickness hI reinforced using ribs or stiffeners of
thickness h2 > hI' For the purposes ofstructural design the problem is to find the distribution
of ribs providing the stiffest response to a prescribed load. Problems of this type have been
treated extensively in the literature. Since the early 80's it has been known that the optimal
reinforcement of Kirchoff plates may include infinitely fine arrangements of ribs, as indi··
cated in the work of Cheng and Olhoff, (1981), Lurie et al. (1982), and Olhoff et al. (1981).
Such optimal layout p'roblems are found to be made well-posed by extending the class of
designs to include effective rigidity tensors. It is within this class that a globally optimal
design can be found, see Cheng and Olhoff (1981), Lurie et al. (1982), and Murat and
Tartar (1985). The effective rigidity tensor captures the overall limiting behavior of an
optimizing sequence of layouts with increasingly oscillatory arrangements of stiffeners, This
tensor may be anisotropic and depends on the local geometry of the stiffeners.

For optimal compliance design it is of key importance to have an explicit charac­
terization for the set of extremal effective rigidity tensors that maximize or minimize sums
of strain energies, see Allaire and Kohn (1993), Jog et al. (1994) and Diaz et al. (1995), and
the recent papers of Allaire et al. (1995) and Cherkaev and Palais (1995).

In this article we provide such a characterization for stiffener reinforced Reisner­
Mindlin plates, see Sections 6 and 7. To obtain the characterization we start by finding
explicit bounds on the effective rigidity tensor for periodically reinforced plates, see
Section 4.

We remark that the assumption of periodicity is general since any effective rigidity
tensor can be approximated arbitrarily well by that associated with a suitable period
geometry. Such observations hold generically for perfectly bonded linear elastic and heat
conducting materials and can be found in the work of Golden and Papanicolaou (1983)
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(in the context of random media) and DalMaso and Kohn (in preparation), in the context
of G-convergence.

The effective rigidity tensor for Reisner-Mindlin plates has two components: an effec­
tive shear stiffness D~ and an effective membrane stiffness D's.

For a set Kb K2,"" KN of constant curvatures and constant transverse shears VI.
h ... , YN the sum of energies is written

N

'" (De K- . K" +De}J ',')L.. B j' j S j (/ .
j~ 1

The bounds on the effective tensor are given in terms of two geometric parameters charac­
terizing the composite structure. The first is the area fraction of the stiffeners 82 and the
second is a probability measure on the unit circle f..l describing the anisotropy of the
composite.

Similar measures describing the anisotropy of composites have appeared earlier in the
context of multi-phase elastic composites, see Willis (1982), and Avellaneda and Milton
(1989). For fixed values of 82 and f..l the bounds on the effective tensor are given by tensors
(D j; , Dn, (D iJ , Ds) that depend explicitly upon 82 and f..l, see Sections 4 and 6. For fixed
values of 82 and f..l we show that the estimate

IV N IV

L(DiJKj:Kj+DsYj'yJ ~ I(D'sKj:Kj+D~Yj'YJ~ L(Dj;Kj:Kj+DtY/'YJ
j~l j~l J~l

holds for all finite sets of constant curvatures and transverse shears, see Sections 5 and 6.
Our bounding method follows the approach of Lipton (1994a) given in the context of
reinforced Kirchoff plates. The approach taken here is distinct from the usual Hashin­
Shtrikman method for obtaining bounds. Unlike the Hashin-Shtrikman method, we do 1I10t
use a comparison material or solve an associated homogeneous elastic problem. Instead,
we tackle the problem head on and write an integral equation for the local curvatures and
transverse shears. The equations relate volume averaged curvatures and transverse shears
to local curvatures and transverse shears through integral operators. The spectrum of these
operators is analyzed, and it is shown that the operators are positive definite (see the
Appendix). The positivity of the operators is used to obtain a Hilbert space variational
principle for the effective stiffnesses. For the simple choice of constant trial fields, we arrive
at the upper and lower estimates on the effective properties in terms of 82 and f..l. We remark
that the integral operators appearing here are the analogues of those introduced in the
work of Golden and Papanicolaou (1983), for problems of heat conduction. In fact, the
spectral estimates given in the appendix, allow one to write explicit analytic representation
formulas for the effective rigidity. This topic is not pursued here, however we note that
bounds obtained from such formulae would naturally agree with the ones presented here.
Lastly we note that the usual Hashin-Shtrikman method can be used to obtain the bounds
presented here.

To complete the characterization of the extremal set of rigidity tensors we introduce a
special class of effective rigidities associated with hierarchical "laminar" arrangements of
stiffeners, see Section 5. These are the analogies of the well known finite rank laminar micro
geometries introduced in the contexts of elasticity and heat conductivity by Francfort and
Murat (1986), Tartar (1985), and Lurie et al. (1982).

The effective tensors for such geometries have been found to be extremal in the context
of Kirchoff plate theory and elasticity, see Gibianskii and Cherkaev (1984), Avellaneda
(1987), Milton and Kohn (1988), Kohn and Lipton (1988), Allaire and Kohn (1993), and
Lipton (1988). For every choice of volume fraction 82 and probability measure f..l we exhibit
laminates whose effective rigidity tensors are identical to the tensors (D iJ , Ds) or (D j; ,
D n, see Sections 5 and 6. These observations provide us with the necessary closed form
characterization of the set of extremal effective rigidities. This characterization has been
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used in the numerical approach to optimal reinforcement of Reisner-Mindlin plates given
in the work of Diaz et al. (1995).

The paper is organized as follows: in Section 2 we introduce the effective rigidities in
the context of periodic microstructure. To obtain bounds we write the effective tensors in
terms of positive definite integral operators, see Section 3. Explicit formulae for the oper­
ators are obtained in Section 3. The positive definiteness of the operators is used to obtain
a Hilbert space variational principle describing the effective rigidities, see Section 4. Bounds
are obtained from the principles via suitable choices of trial fields. Closed form charac­
terization of the sets of extremal rigidities are given in Sections 5 and 6.

2. EFFECTIVE RIGIDITY TENSORS

For our purposes we consider a unit period cell Yin R2
• Let Ph and P, denote the

projections onto the spaces of hydrostatic and shear strains, respectively. Then the rigidity
tensors of the unreinforced and reinforced plate are given by (D 1, D 1) and (D 1, D~),
respectively, where:

D~ = (2/3)h,3E((1+V)-lP,+(1-V)-lph ), i= 1,2,

D~ = h;E(1 +V)-l I, i = 1,2,

and I is the 2 x 2 identity. To fix ideas we have assumed that the Young's modulus and
Poisson ratio of the stiffener are identical to those of the plate. However, the methods given
here extend to the case when the stiffener and plate have different isotropic elastic properties.
The periodic rigidities are given by

(1)

where X2 is the indicator function of the stiffeners and Xl = 1- X2' The volume fraction of
stiffeners 82 is given by

We denote the average curvature and transverse shear by R; and 'ji, respectively. The local
curvature is given by K = R; +~ where

and f3 is the mean zero part of the transverse fiber rotation. The local transverse shear strain
. * hIS Y = 'ji + y were

*y = Vw-f3.

Here w is the transverse displacement of the mid-plane.
The effective properties in bending D~, and shear D~ are defined via equations

D~K = f- DB(K+~)dY
}'

(2)

(3)
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Lastly, the fluctuating parts of the local fields are seen to satisfy the equilibrium equations

for all square integrable mean zero curvatures Kand shear strains y.

3. EFFECTIVE PROPERTIES IN TERMS OF INTEGRAL OPERATORS

(4)

In this section we provide a second formulation for the effective rigidity tensor in terms
of integral operators. This will be used in the sequel to develop a suitable variational
principle describing the effective stiffnesses. We introduce the operators As and A B defined
by

and

AsY =(D~-Dl)(Y+y).

From the cell problem (4) we have

or, equivalently,

since

* -On the other hand, K = V{3 and it follows that

or

and

We denote the space of 2 x 2, Y-periodic, square integrable symmetric matrix-valued
fields by H B • The space of Y-periodic, square integrable vector fields is denoted by H s . For
any q in H B we define PB as the operator

so that
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and formally, we have

Since

we obtain the final expression

We proceed in identical fashion to derive

3695

(5)

(6)

where the operator Psis defined on the space of Y-periodic square integrable vector fields
and is given by

Applying (1), (2) and (3) write

(D1-D'n)K:K = tX1(D1-D1)(K+k)dY

(D1-D~)y'y = tXl (D1-D})(y+y) dY.

From the definitions of As and As, it follows that

and

(7)

(8)

(9)

The identities (8) and (9) provide a second formulation for the effective rigidity tensor. The
operators As and As are shown in the Appendix to be well defined and positive definite.

4. EXPLICIT FORMULAE FOR NONLOCAL OPERATORS

Here we find explicit formulas for the nonlocal operators Ps and Ps using Fourier
methods. Consider first the equation

(v'D1V)w = V'v

where v is Y-periodic with mean zero. Write V· vas

V'v = I. e'k'Yk'v(k)
k,'O

(10)
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and IV as

where
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W = L eik'Yw(k)
k",O

ik·O(k)
w(k) = - .

k·(D~k)

( 11)

(12)

Recalling the definition of the operation Ps, it follows from (10), (11) and (12) that:

Rearrangement gives,

PsV = L. eik'YPs(k)O(k)
k",O

where

A k(2)k
Ps(k) = .

k ·(D~k)

Proceeding in a similar way we obtain

PBP = L e ik'YPB(k)p (k)
k",O

where

3(1+v)
c ------'----'--

o - 2hiE '

and

5. UPPER BOUNDS ON THE EFFECTIVE RIGIDITY

In the section we introduce a Hilbert Space variational principle describing the effective
rigidity. This principle is used to obtain upper bounds on the effective properties. From (8)
and (9) it follows that for any constant curvature K and transverse shear y that

We observe that the operators A B and As are positive definite (see Appendix), from
which it follows

(13)
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Expanding (13) gives the variational principle

3697

for any q in H B and pin H s. It is easily seen that this variational principle is tight. Indeed,
one has equality for the choice p = ABK and q = AsY. The variational principle is used to
obtain lower bounds. We consider a constant 2 x 2 matrix I} and constant vector ( in R2

.

We let q = I} and p = ( and apply (5) and (6) to obtain

(D1-D~)R:R+ (D~ -D~)y'Y~ 28, (I}: R+ (' y) -fJ" (D1-D 1)-11}: I} d Y
y

Expanding the tensors

gives

and

where

We find now that

I IXl(kW = 8182 ,
k'i'O

(14)

(D1- D~)R:R+ (D~ -D~)y'Y~ 28 1(I}: K+ (. y) - [8, (D1- D 1)-1

- L IX1(kWPB(k)]I}:I}-[8,(D~-D.D-1- L IXI(kWPs(k)]('( (15)
k'i'O k'i'O

which holds for any ( and I}. Introduce now tensors D t and D t defined via

(16)
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Using Dt and Dt we may write (15) as

(17)

(D~-D~)K: K+ (D~-D's)Y'Y~ 2e l (YJ: K+~')I)

-eT(D~-Dt)YJ: YJ-eT(D~-Dn~' ~ V~, YJ (18)

and hence,

(D~-D~)K: K+ (D~ -D's)Y' y ~ sup [2e l (YJ: K+ ~. y)
~,ry

-eT(D~-Dt)YJ: YJ-eT(D~-Dn~' ~]. (19)

From stationarity, the supremum (19) is achieved when

and

From this choice the bound is given by

(D~-D~)K: K+ (D~ -D's)y' '1 ~ (D~-Dt)K: K+ (D~-D ny' '1.

In the next section we show that the tensors D t and D t in (16) and (17) correspond to
the effective properties of a suitably chosen finite rank laminate. To facilitate this identi­
fication, we follow Willis (1982) and Avellaneda and Milton (1989), and write the sums in
(16) and (17) as

I ll~ IiI (kW PB(lc) = f PB(n) d/1(n)
k#O VI (72 s'

I ll~ IiI (kW Ps(lc) = f Ps(n) d/1(n)
k#OVl V 2 Sl

where n is a unit vector on the circle SI and the positive correlation measure /1 is given by

1
d/1(n) = IlliJ r lil(kWl5(l-n)dn,

III ~ I VI (72 IIkll ~ I

and from (14) it follows that ISl d/1(n) = 1.
We indicate the dependence of the tensors D -: and Dt on area fraction of the stiffener

reinforced plate e2 and the correlation measure /1 by writing, D t (/1, ( 2), D t (/1, ( 2) and (16),
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(20)

(21)

Collecting results it follows from (5) that for composites with specified volume fraction
82 and correlation measure j1 we arrive at the:

Theorem 5.1. For given values of volume fraction and anisotropy measure one has:

for all 2 x 2 symmetric matrices K and vectors y in R2
•

6. CHARACTERIZATION OF EFFECTIVE TENSORS MAXIMIZING SUMS OF ELASTIC
ENERGIES

To complete the characterization of the set of external effective rigidity tensors w(:
introduce a special class of rib geometries whose effective rigidities will prove to be extremal.

We now introduce the notion of a finite rank stiffener reinforced Mindlin plate. To fix
ideas we describe a rank 2 reinforced plate. We consider a family of uniformly spaced ribs
of thickness 2h2 normal to a given direction n,. The family is assumed to oscillate on a scak
of order 8

2
. Next we consider strips of order 8 containing the finitely ribbed material. The

normal to the strips is specified by n2'

These strips are uniformly interleaved with the stiffened plate on a scale of order 8.

The effective properties are obtained asymptotically in the 8 = 0 limit. Higher rank stiffeners
are defined iteratively. We provide explicit formulas for DB and Ds for such micro structures.

One observes that the formulae (20) and (21) are mathematically analogous to those
defining effective heat conductivity and elasticity. Indeed, a direct transcription of the finite
rank laminate formulae of Murat and Tartar (1985) for heat conductivity and those of
Francfort and Murat (1986) for elasticity deliver the following formulas for DB and Ds

(22)

(23)

where the positive measure v(n) on the unit circle Sl is defined by

J

v(n) = I p;b(n-n;).
i=l

The extremal nature of the effective rigidity tensors of finite rank stiffener reinforced plates
is seen in the following:

Lemma 6.1. For prescribed 82 and correlation measure j1, the geometric tensors D ii(j1, 82),

D t (j1, 82) correspond to the effective bending stiffness and transverse shear stiffness of a
suitably constructed finite rank stiffener reinforced plate.
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To prove the Lemma we follow the approach given by Avellaneda (1987) in the context
of two phase elasticity. Let p be any correlation measure and we consider the set S of all
pairs of the form

(1, PB(n) dp(n), 1, Ps(n) dP(n)).

We introduce the 6-dimensional space L of totally symmetric fourth order tensors and the
3-dimensional space T of symmetric 2 x 2 matrices. The surface S is defined by the map

and we consider the convex hull of the surface denoted by CCS). It is evident that S is a
subset of convex hull CCS). From the definition of C(S) we have that all extreme points lie
on the surface S contained in the 9-dimensional space Lx T. Thus, for a given correlation
measure J1 it follows from Carathedory's theorem that there exists a laminate with measure
v of at most rank 10 for which

The Lemma follows immediately from (24) and the formulae for D Ii, D t and DB' Ds.
Combining Theorem 5.1 and lemma 6.1 gives:

Theorem 6.1. For all composites with prescribed volume fraction of stiffeners (}2 and
anisotropy measure Ii, there exists an effective rigidity tensor (DB, Ds) of a finite rank
stiffener reinforced plate for which

N N

L (D~K; : K; +D~1i' yJ :::; L (DBK; : K; +DsY;' Y;)
i= 1 i=l

holds, for any set of constant curvatures K[, K2, ... ,KN and transverse shears YJ, 'Y2, ... , Yv.
This theorem shows that extremal rigidities maximizing sums of energies can be found

within the class of finite rank laminates.

Theorem 6.2. For fixed area fraction of stiffeners (}2 and for a given set of curvatures K[,

K2, ... ,KN and transverse shears Y[, Y2, ... , "iN one has the upper bound:

7. NEW VARIATIONAL PRINCIPLES AND ENERGY MINIMIZING SETS OF EFFECTIVE
RIGIDITIES

We develop lower variational principles for the effective rigidity tensor. From these
we follow the procedure given in Sections 3-5 to describe the set of energy minimizing
effective rigidities. Introducing the operators Cs and CB defined by
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and

The effective rigidity tensor is written

3701

One can show as before that the transforms CB and Cs are positive definite. Proceeding as
in Section 4 we obtain the variational principle:

for all q in H B and p in H s. One can use hierarchical grooved geometries to construct
compliant effective rigidities. Here we start with a thick plate (of thickness h2 ) and cut
uniformly spaced grooves of depth h2 -h, normal to a given direction nl' The grooves are
assumed to oscillate on a scale of order [;,Y. Next we consider strips of order f/" - 1 containing
the grooved material. The normal to the strips is denoted by n2' These strips are uniformly
interleaved with wider grooves on a scale of order eN-I. This process is carried out iteratively
until we arrive at a structure with characteristic length e. The effective rigidity is obtained
in the e = 0 limit. The formulae for the effective rigidities (12B,12S) are given by

Proceeding as in the previous sections we obtain the following theorems.

Theorem 7.1. For all composites with prescribed volume fraction of grooves 8, and ani··
sotropy measure 11, there exists an effective rigidity tensor (DB, Ds) associated with a finite:
rank grooved plate for which

N N

L (QBK; : K; +15s1;' yJ ~ L (D"sK;: K; +D~y;' 1J
i=l i=l

holds, for any set of constant curvatures Kto K2' ... , KN and transverse shears Yl, Yz, ... ,YN'
This theorem shows that extremal rigidities minimizing sums of energies can be found

within the class of finite rank laminates.

Theorem 7.2. For fixed area fraction of grooves 81 and for a given set of curvatures K 1,

K2' ... , KN and transverse shears Yb Y2, ... , YN one has the lower bound:
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8. CONCLUDING REMARKS

The effective stiffnesses of finite rank reinforced plates can be written in terms of four
independent scalar variables, these being moments of trigonometric functions, see Diaz et
at. (1995). Such transformations have been introduced earlier and the set of moments
characterized for problems in two dimensional elasticity and Kirchoff plate theory by
Avellaneda and Milton (1989). The inverse problem of finding layer widths and orientations
from the moments is solved in Lipton (1994b). These results can be applied in the present
context to show that at most third rank stiffener reinforced plates span the extremal set of
effective tensors. This was done in the recent work of Diaz et at. (1995).
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APPENDIX

We establish invertibility and positivity for the operators AD and As introduced in Section 3. We start by
formal1y writing AD and As as :



where

and
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Here {)B and {)s are positive definite and so their square roots are well defined. We establish that A B and As are
well defined and invertible by showing that the inverses Li \ and L:s \ exist. We denote the usual inner products
for the spaces HB and Hs by C -)B and C -)s, respectively. One easily sees that the operators LB and Ls are
symmetric and invertibility for the linear operators L B and L s follows from the spectral estimates:

(A. I)

(A.2)

for all q in H B and

for all pin H s.
Here I B and Is are positive, satisfy I B ,,; I, Is"; I and are given by

(A.3)

(A.4)

hi-hi
I B =--,

hi
h2 -h\

Is = -h-,-' (A.5}

To fix ideas we show how to obtain the estimates (A.I) and (A.2) on LB' Expansion of <L[ilj,q)B, noting that
<X\q, q)B"; <q, q)B and application of Cauchy's inequality gives:

(A.6)

Expansion of <LBq, LBq)B and application of Cauchy's inequality gives

(A.7)

From (A.6) and (A.7) we see that (A.I) and (A.2) follow easily from the following estimate:

(A.8)

We remark that (A.8) amounts to an upper bound on the eigenvalues for the operator.j()BPB~'To obtain
(A.8) we apply Parseval's identity to write

(A.9)

We estimate each term in the series to find

(A.ID)

and (A.8) follows from a second application of Parseval's identity. ~ •
The estimate (A.lO) follows by computing the eigenvalues of the tensor .j{)BPB(k)~.The eigenvalues are

found to be independent of the wave vector and have the values 0 and lB' Here IB is an eigenvalue of multiplicity
two. A computation shows that the operator ~fiB(k)~ is written:

(A.II)

where k = k/lkl and P(k) is the projection onto the subspace spanned by the matrices

(A.12)

where
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and

and
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p=1/2(~-~)

Last, we recover the necessary positivity properties for the transforms Ai3 1 and As 1. These are:

(A 13)

(A.l4)

(AI5)

(A.16)

We prove (A. I5) noting (A. 16) follows along the same lines. Expanding Ai3 1 , we see that (A. 15) is established
through the following string of equalities:

<X1Ali'q,q)s = <xl(Al-1Ls(A)-'q,q)s

= <X,(A)-I(l_jiisPSX1JiiB)(A)-lq,q)B

= <(l-JiisPBx,jiiB)(A)-IXl q,(A)-'Xlq)S

= <LB(A)-IXlq,(JiiB)-IXlq)S

? (1- (s)«j iiB)-I x, q,(jiiS)-1 Xl q)B'

(A.17)

(A. IS)

(A.19)

(A.20)

(A.21)

where the last inequality follows from (A.l). It is evident that the necessary positivity properties for A B and As
follow immediately from those on Ali' and As 1 •


